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It is known that the mixing or spreading rate of free mixing layers decreases with an 
increase in the convective Mach number of the flow. At supersonic convective Mach 
number the natural rate of mixing of the shear layers is very small. It is believed that 
the decrease in mixing rate is directly related to the decrease in the rate of growth 
of the instabilities of these flows. In an earlier study (Tam & Hu 1989) it was found 
that inside a rectangular channel supersonic free shear layers can support two 
families of instability waves and two families of acoustic wave modes. In  this paper 
the possibility of driving these normal acoustic wave modes into resonant instability 
by using a periodic Mach wave system is investigated. The Mach waves can be 
generated by wavy walls. By properly choosing the wavelength of the periodic Mach 
wave system mutual secular excitation of two selected acoustic wave modes can be 
achieved. In undergoing resonant instability, the acoustic modes are locked into 
mutual simultaneous forcing. The periodic Mach waves serve as a catalyst without 
actually being involved in energy transfer. The resonant instability process is 
analysed by the method of multiple scales. Numerical results indicate that by using 
wavy walls with an amplitude-to-wavelength ratio of l i %  it is possible to obtain a 
total spatial growth of eB folds over a distance of ten channel heights. This offers 
reasonable promise for mixing enhancement. The results of a parametric study of the 
effects of flow Mach numbers, temperature ratio, shear-layer thickness, modal 
numbers as well as three-dimensional effects on the spatial growth rate of the 
resonant instability are reported and examined so as to provide basic information 
needed for future feasibility analysis. 

1. Introduction 
Recent investigations by Ikawa & Kubota (1975), Bogdanoff (1983), Papamoschou 

& Roshko (1986, 1988) and Chinzei et al. (1986) have established experimentally that 
the mixing or spreading rate of supersonic shear layers decreases as the convective 
Mach number increases. Papamoschou & Roshko were the first to demonstrate that 
there is a strong correlation between their measured spreading rate data (normalized 
by the incompressible flow value) and the theoretical maximum growth rate of the 
instability waves of the shear layer. Since then the theoretical instability wave 
growth curve has been recomputed and its good correlation with the experimental 
measurements reconfirmed by Ragab & Wu (1989), Zhuang, Kubota & Dimotakis 
(1988), and Jackson & Grosch (1989) using unconfined mixing-layer models. A more 
recent calculation by Zhuang, Kubota & Dimotakis (1989) using a shear-layer model 
enclosed a t  the top and bottom by solid walls essentially reproduces similar results. 
The implication of these works is that flow instability is the principal mechanism 



66 C. K .  W .  Tam and F .  Q .  H u  

I I’ Wall 

Shear layer d-= H 

1 I 
. .  . 

A I, I 
A ,,,,,,,,,,, , ,,,, 4 4 7 7 7  

+E +B 
t= 1- 

1 -  I 

u 
FIGURE 1 .  Free shear layer inside a rectangular channel. 

responsible for the mixing and spreading of high-speed shear layers. Further, the 
decrease in the spreading rate of a supersonic mixing layer is due directly to the 
decrease in the growth rate of the inherent instability waves of the flow. In  many 
practical problems such as shear flows inside the supersonic combustors of jet engines 
it is essential to have a large mixing rate. In  the light of the recent experimental 
results i t  becomes apparent that the required mixing rate cannot be achieved by the 
natural instability and mixing processes. The primary objective of this paper is to 
investigate the feasibility of using a new mixing enhancement scheme. This scheme 
uses a periodic Mach wave system generated by a slight waviness of the enclosure 
surfaces. It will be shown below that the presence of a suitably chosen periodic Mach 
wave system induces the natural wave modes of the ducted shear flow to undergo 
resonant instability. Numerical results indicate that large enough instability growth 
rates can be realized, giving rise to  the possibility of achieving a greatly enhanced 
rate of mixing. 

It is now known that ducted free shear layers behave differently from their 
unconfined counterparts at high speeds. When housed inside a rectangular channel 
(see figure 1) the motion of a supersonic shear layer is invariably coupled to the 
acoustic modes of the duct. This coupled motion was studied recently by a number 
of investigators including Zhuang et al. (1989), Greenough et al. (1989), Mack (1989) 
and the present authors (Tam & Hu 1989). In our work an extensive search of the 
normal wave modes of the coupled motion was carried out. It was found that bccause 
of the coupling to the acoustic modes a thin shear layer which is known to become 
neutrally stable at high supersonic convective Mach number (see Miles 1958) 
remained unstable in the confined environment. Systematic calculations showed that 
for ducted supersonic shear layers there are two basic families of instability waves 
(the A and B modes). Each wave mode within each family is characterized by two 
integer mode numbers (m, n) .  The m-number is related to the number of reflections 
off the two sidewalls. The n-number is related to the number of reflections off the top 
and bottom walls of the channel. For clarity, members of the two families of 
instability waves are designated as A,, and B,, (m = 0,1 ,2 ,  ...; n = 1 , 2 , 3 ,  ...) 
respectively. Typical dispersion relations for a few of the lower-order modes of these 
instabilities a t  M ,  (Mach number of the fast stream) = 3.5 and M, (Mach number of 
the slow stream) = 1.2 with sound speed ratio a,/a, = 1.2 are shown in figure 2. For 
reference, the growth rates ( - ki H ,  where H is the channel height) of the A,, mode 
at  different ratios of the shear-layer vorticity thickness to channel height (6,/H) as 
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FIGURE 2. Dispersion relations (k ,H versus w H l t i , )  of instability and acoustic wave modes of a 
supersonic shear layer inside a rectangular channel. M, = 3.5, M2 = 1.2, aJaz = 1.2, y, = yz = 1.4, 
H ,  = H ,  = 0.5H, S J H  = 0.05. ---, w l k  = az-az; -x-x--,  w l k  = til-al; 
w l k  = ti,+a,; -.-.-, w l k  = ti,+a,. 

functions of the non-dimensional angular frequency are provided in figure 3. It is 
readily seen from this figure that in a channel of fixed height the growth rate of the 
instability wave decreases rapidly with increase in shear-layer thickness. Over a 
reasonably long propagation distance, say ten channel heights, the total ampli- 
fication of the instability waves is quite small; insufficient to bring about an 
adequate rate of mixing. 

In  addition to  the two families of instability waves, two families of neutral acoustic 
modes were also identified (referred to  as the C and D modes). The members of these 
two families of waves are also specified by two integer mode numbers (m, n )  as in the 
case of the unstable waves. Again the m-number is related to the' number of 
reflections off the sidewalls and the n-number is related to the number of reflec- 
tions off the top and bottom walls. Typical dispersion relations of these C,, and 
D,, (m = 0,1 ,2 ,  ... ; n = 1 , 2 , 3 , .  ..) acoustic modes are shown in figure 2. It is to  be 
noted that although the wavenumbers of the D,, modes are negative a t  low 
frequencies they, like the C,, modes, are downstream-propagating waves (see Tam 
& Hu 1989 for details). 

We will now outline the basic idea of using a periodic Mach wave system to drive 
the natural wave modes of the flow into resonant instability. Since the flow is 
supersonic i t  is easy to introduce a periodic Mach wave system into the channel flow 
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FIGURE 3. Growth rate of the A,,  instability wave at different vorticity thicknesses. M ,  = 3.5, 
M ,  = 1.2, aJa, = 1.2, y ,  = y, = 1.4, H ,  = H ,  = O.BH. 

by making the top and bottom channel walls slightly wavy as shown in figure 4. 
Without loss of generality let us consider resonant instability involving a C,, wave 
and a D,,, wave of the same frequency w .  For illustration, it will be assumed for the 
time being that all the waves are one-dimensional (the complete three-dimensional 
wave mode analysis is given in $3). The C,, and D,,! waves as well as the Mach 
waves may be represented mathematically by 

Cei(kcz--ot) 9 , g e i ( k ~ z - 4 ,  A cos ( k M X )  = L j ( e i k M z + e - i k M z 5 ) ,  

where C and D are the wave amplitudes of the propagating waves and A is the 
amplitude of the standing periodic Mach waves. k, and k, are the wavenumbers of 
the C,, and Dmnf waves respectively and k, is the wavenumber of the Mach waves. 
Suppose the wavenumber of the Mach waves is chosen so that the resonance 
condition 

k c - k D  = k, ( 1 )  

is satisfied. As the C,, and D,,, waves propagate downstream through the Mach 
wave field they will invariably interact with the periodic wave system (through the 
nonlinear terms of the flow equations) giving rise to a set of non-homogeneous terms. 
Some of these terms arising from the interaction between the C,, wave and the Mach 
waves have the form 

(2) 

(2) is in the form of a D,,, wave. Similarly the interaction of the D,,, wave and the 
Mach waves gives rise to product terms of the form, 

c ei(kcz-wt) A e - ikMz  = AC ei(kDz-wt) . 

(3) D ei(knz-wt) A &kMz = AD ei(kcz-wt) 

which is in the form of a C,, wave. The nonlinear product terms provide a forcing 
on the respective waves. Since the forcing functions have the same frequency and 
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FIGVRE 4. Periodic Mach waves generated by wavy walls inside a rectangular channel. 

wavelength as the natural wave modes, resonance would occur. In the present 
context, the periodic Mach waves act as a catalyst allowing the C,, wave to force the 
Dm,, wave and vice versa. In this way, as will be shown later, under mutual forcing 
the two waves grow exponentially as they propagate downstream, exhibiting the 
phenomenon of resonant instability. 

It is worthwhile to point out that  there are other examples in the literature 
involving strong resonances arising from the interaction of wave trains and a 
stationary periodic field. However, these resonances do not always lead to 
instabilities. Recently Mei and coworkers (Mei 1985; Mei, Hara & Naciri 1988) 
studied the resonance between water waves incident on periodic longshore sandbars. 
The phenomenon is analogous to Bragg reflection in crystallography. Strong 
resonant reflection was found. But there was no instability. On comparing the 
resonance mechanisms described by Mei and the above discussion it is noted that 
resonant instability could occur when two wave trains with matching wavenumbers 
with respect to the stationary periodic field are present. When there is one incident 
or forced wave train only resonant reflection could occur. The condition for resonant 
reflection is that  the difference between the wavenumbers of the incident and the 
reflected waves is cqual t o  that of the scatter field. 

In 92 of this paper the mean flow profile and the periodic Mach wave field used in 
the instability analysis will be discussed. In 93 resonant instability of two normal 
wave modes of a ducted shear flow in the presence of a periodic Mach wave system 
if analysed using the method of multiple scales (see e.g. Nayfeh 1973). Typical 
numerical results are reported in 94. It turns out that  the spatial growth rate of the 
resonant instability is dependent on a number of factors. They include the Mach 
numbers and the temperature ratio of the flow streams, the shear-layer thickness and 
the wave modes involved. The results of a parametric study of these effects are 
reported in 95. Finally a short discussion of the feasibility of using periodic Mach 
waves to induce resonant instability for mixing enhancement is given in the last 
section of this paper. 

2. Mean flow and the periodic Mach waves 
We will consider a two-dimensional shear layer inside a rectangular channel of 

height H and width B as shown in figure 1. For simplicity we will assume that the 
gases on the two sides of the mixing layer are the same and are inviscid and non-heat 
conducting. The fast stream on the top will be labelled by a subscript 1 and the slow 
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stream on the bottom will be labcllcd by a subscript 2 .  The continuity. momentum 
and energy equations for such a flow are 

-+V . (pv )  3P = 0. 
at 

p - + v  uv = - v p ,  E * )  

c?p 
--$ v . v p +  y p v . v  = 0. 
at 

(4) 

(5) 

whcre y is the ratio of the specific. heats of the gas. The time-independent solution of 
the above system of equations which satisfies the boundary conditions at thc walls 
of the channel is 

v = ~ ( y )  2%, p = p(y). p = 17 = const. ( 7 )  

where kZ is the unit vector in the x-direction. In  all the numerical work of this paper 
the mean velocity and density will be assumed to  have hyperbolic tangent profiles. 
Specifically we will use 

u , + u , + ( ~ , - ~ ~ ) t a n h  

p1+p2+(pl-p2)tanh (9) 

In  (8) and (9) 8, is the vorticity thickness of the shear layer. It is t o  be noted that  
with constant mean pressure the mean temperature distribution is proportional to  
the inverse of the density distribution. The hyperbolic tangent velocity profile (8) is 
a reasonably good approximation of the velocity profiles measured by Papamoschou 
(1986). Up to  the present time there is a lack of measured density profiles: the 
authors are unable to  find any in the literature. The reason for the choice of (9) is its 
simplicity but it should be replaced by a more realistic distribution whenever such 
information becomes available. 

Now consider a periodic Mach wave system generated by a slightly wavy bottom 
surface (with wavenumber k M )  of the channel as shown in figure 4. To the right of the 
first Mach wave the wavy wall surfaces are given by the formula 

(10) 
2x6 Bottom wall y = -H,+-sin(k,x), 
kA4 

Top wall 

It will be assumed that E ,  the> ratio of the maximum vertical displacement of the 
bottom wavy wall to the wavelength. is much smaller than 1 (say no more than 
1.5 %) : 6 being very small provides a natural parameter for perturbation analysis 
later. In  figure 4 it is implied that  the Mach wave system is generated by the bottom 
wall. The Mach wave system passes through the shear layer upward to  reach the top 
wall where, for simplicity, a no-reflection condition is imposed. This is done by an 
appropriate choice of the amplitude and phase parameters a and $ of (11). In  this 
way a well-defined periodic Mach wave system. except for the weak reflected wave 
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off the shear layer, is imposed on the contined supersonic shear layer. With 6 < 1 a 
linear Mach wave solution will suffice. For clarity, we will use a subscript M to denote 
the physical variables associated with the Mach wave system. By linearizing (4)-(6) 
it is easy to tind that the governing equation for the pressure, p,, associated with the 
Mach wave is 

where a = ( yp /p ) i  is the speed of sound. The shear layer as given by (8) and (9) is 
eflectively confined within the region -S < y < S; 6 = 36,. Outside this region (12) 
can be integrated readily which, together with the boundary condition on the wavy 
wall, gives 

In addition to the Mach waves give by (14) there is also a weak reflected wave (off 
the shear layer) in the lower uniform region. The reflected wave solution is 

(15) 

where /3 and @ are as yet unknown constants. 
To find the Mach wave solution inside the shear layer one may use (13) as the 

starting solution at y = S and integrate equation (12) until y = 0 is reached. To 
simplify the integration, the cosine function in (10) can first be written in exponential 
form and the exp (ik, x) and exp ( - ik, x) factors be separated out. Now one uses the 
linear combination of (14) and (15) as the starting solution at y = - 6 and integrates 
(12) up to y = 0. Again the x-dependence in the form exp (ik, x) and cxp (-ik, x) 
may be first separated out. The solutions are then joined at y = 0. The requirements 
of continuity of solution and its first derivative provide four conditions by which the 
four unknowns a ,  q5, P and $ can be determined. 

p ,  = PE cos ( k ,  X+ k,(Mi- l ) i y +  $), 

3. Analysis of resonant instability by the method of multiple scales 

superimposed on the mean flow and the periodic Mach wave system. Let 
We will now consider small-amplitude wave disturbances (denoted by a prime) 

[ fl = [;I+ [ 3 + [ 3 
mean Mach unsteady 
Plow waves disturbance 

To show the explicit dependence of the Mach waves on the small parameter E we will 
define 
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The governing equations for the unsteady disturbances can be found easily by 
substituting (16) into (4)-(6). To linear order these equations are 

apt apf dp - 

at ax dy 
-+ G-+ tq‘ -+p V. U’ = - ~ [ d ,  * Vp’ + V ’ . V ~ , ~ ,  + b M  V *  U’ +/IT* d,]. (18) 

p -[; -++-+2*’-2x ; ] +Vp’  

where (u, w. w )  are the velocity components in the (x .  y. 2)-directions. The linearized 
boundary conditions on the top, bottom and sidcwalls are 

1 323‘ 
cos(k,x)u’--sin (k,wx)- a t  ,y = - H 2 .  

M ay 
( 2 2 )  

3.1. Multiplp-seak Pxpansion 
Anticipating spatial resonant instability that occurs over distances of several 
wavelengths we will introduce a slow variable .s = 61’. M‘ith (5, y, z ,  s. t )  as independent 
variables (18)-(20) become 

1 ap’ au’ 
G- +p- + i?,,, * Vp‘ + U’ V;, +iM V * V’ + p’V * d,,,, + O(E’), (24) 

as 2s 

p -[:‘ -++-++>’-ex au’ d u - ]  +vp‘ 
c7x dy 

avf api c?v’ a u‘ d a 
- - 6 pa- + - 2, + p* -+pi, ‘ VV’ U T  + f&, I‘’ - 2, + pu’ . 
- [ as as ‘LI at C X  dy 

+ yj iM v * u‘+ yp‘V. 6, + O(e2). (26) 1 
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We will seek a solution of the above equations in the form of a multiple-scale 
expansion with E as the small paramcter : 

Substitution of (27) into (24)-(26) and boundary conditions (21)-(23) we find upon 
partitioning terms according to  powers of E the following system of equations : 

Order EO 

Order 6 

aP0 aP d p  - - + u ~ + w , - + p v . u ,  = 0, 

p -+u-+v0-kz +vp, = 0, 

aP0 aP - + + d + y p v . v ,  = 0, at ax 

at ax dy [z avo du ] 
ax dy 

y = H,,  W, = 0, 
y = - H 2 ,  W, = 0, 

2 = *i$, wo = 0 ;  

aP1 aP dp - + + ~ + v 1 - + p T . u 1  =I, ,  
at ax dy 

aP1 aP -+,u-+ y p v .  u1 = K O ,  
at ax 

y = H, ,  v, = 27ta 

(28a)  

(33) 

(34) 
The non-homogeneous terms I,, J , ,  K O  are given by the terms inside the brackets on 
the right-hand sides of (24)-(26) with the primed quantities replaced by the order- 
eo solution. The order-so problem defined by (28a-f) is identical to  the small- 
amplitude normal mode problem of a two-dimensional mixing layer inside a 
rectangular channel (in the absence of the periodic Mach waves). This problem has 
been studied and analysed by the present authors (Tam & H u  1989). It has been 
found tha t  there are four families of wave solutions. Two of them, the A,,  and B,, 
(m = 0,1 ,2 ,  . . . ; n = 1 , 2 , 3 ,  ...) modes, are unstable waves. The other two families, the 
C,, and D,, modes, are neutral acoustic waves. Typical dispersion relation of these 
waves arc given in figure 2. 

Let us  now consider two waves with the same angular frequency w and m number. 
Without loss of generality let them be a C,, and D,,, wave. We will denote the 
wavenumbers of these waves as k, and k, and identify their eigenfunctions by 

y = - H 2 ,  w1 = 27t [ 
z = *$, 10, = 0. 
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subscripts C' and L)  respectively. Suppose that  these are the waves tha t  we wish to  
drive to resonant instability. For this purpose we will choose the wavenumbers of the 
Mach wave system. k.,,. to  satisfy the resonance criterion 

I; ,  = k,-k,. (35) 
Because the prob1t.m i5 linear, a linear combination of the C',,, and D,,, wave 
solutions is also a solution of (28). Thus let 

(36) 

In  (36) k, .  k ,  and the eigenfunctions are knonn from the solution of the E" problem. 
A,(s )  and A,($)  are the amplitudes of the C,, and D,, waves. They are functions 
of the slow variable s .  These wave amplitudes are unknown a t  this stage. In  thc 
following it will be shown through the mechanism of mutual forcing that  they grow 
exponentially with s.  leading to  resonant instability. 

3.2. Solvubility condition und thP grouith rutP of rpsonnnt instubility 
By substitution of (36) into the non-homogeneous terms of the order-e problem it is 
easy to  find that  there are two types of terms which lead directly to  spatial resonance. 
One group of terms resonates with the L),,, wave. They come from thc product terms 
of wave C,, and the Mach wavc system and also the s-derivative terms of the D,, 
wave. The product terms have x , z- and t-dependence of the form 

sin ( h x z / B )  sin (2nznz/B) 
Cl(kCx-'Llt) e-lk,f l = 

cos (2mxz/H) m s  (BnmzlB) 
(37) 

Another group of terms resonates with the C,, wave. They cwrne from the product 
terms of the L),, wave and the periodic Mach wavcs arid also the s-derivative terms 
of the C',ll, wave. The product terms have L - .  z -  and t-dependence of the form 

sin (2mxz/B) sin (2mxz lB)  
(38) el(k,jx-wt) -lk,\lx - e 

cos (Zn27rz/H) 

Taking into account the different types of non-homogeneous terms we will make 
use of the linearity of the 6-order problem to divide the solution into a linear 
combination of several particular solutions. \Ye will label the particular solution 
specifically for non-homogeneous terms with x-. z -  and i-dependence in the form of 
(37) by a subscript D (they resonate with the D,,, wave). Similarly we will label the 
particular solution specifically for non-homogeneous terms with x- .  z -  and t- 
dependence in the form of (38) by a subscript C (for resonating with the C,, wave). 
Thus let 

;&J. s )  cos (27cmzlB) &(y. s )  cos (Bxmz/H) 
$,(y. s )  cos (27cmzlB) $,(y, s )  cos (27cmzlB) 

@,(y. s )  sin (27cn~zlB) tic(y, 's) sin (Bn.mz/B) 

+other particular solutions. (39) 
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On substitution of (39) into the s-order problcm defined by (29)-(34) and separating 
out the x-, z- and t-dependence, it is straightforward to find that the functions b,, sD 
and 8, of (39) are given by the solution of the following non-homogeneous boundary- 
value problem : 

(40) 
d a  . 

- ip(w-Uk,) 6,  +@ -+ ik,$D = I I D ( y ,  s), 
dY 

6,= PlU at y = H,, (44) 
4, = /3,, a t  y = - H, .  (45) 

The non-homogeneous t,erms I,,, I Z D ,  14,, /3,, and P2, which depend on the e0- 
order solution are known functions of y .  They also depend linearly on A ,  and 
dA,/ds. These functions can be found in a straightforward manner and, therefore, 
will not be written out explicitly. 

Clearly the above non-homogcneous problem admits the Dmn, wave solution of (36) 
as an eigensolution, i.e. $, = p,, d, = vD is a solution of the corresponding 
homogeneous problem. Thus by the Fredholm alternative theorem there is no 
solution to the problem unless the non-homogeneous terms satisfy the solvability 
condition. In other words, a bounded periodic solution in x exists only if the 
solvability condition is satisfied. By applying appropriate integration by parts it is 
easy to find from (40)-(45) that the solvability condition is 

= 0. (46) 
( W - U k D )  p D P I D  I y - H ,  + ( w - E k D )  p D p z D  I y = - H 2  

- 

For the acoustic modes considered here, the intcgrand is regular. 

A,(s) and A,(s) of (36) in the form 
On carrying out the integration of (46) an equation relating the wave amplitudes 

is obtained, where p1 and v, are constants. Similar consideration for the non- 
homogeneous terms of the form of (38) provides an equation relating A,(s) and A,(s)  
in the form 

The simultaneous solution of (47) and (48) is 
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where 

With ( T ~  > 0 thc C,,, and D,,, ~ a v e s  will grow exponentially with s. The growth rate 
is proportional to E .  i.c. 

(51) 

Numerical results of (T, will be presented in thc next section. 
FVe would like to  point out that in the abovc analysis wc’ have chosen a C,, and 

a Zlmn wave to  be the resonant waves. Clearly the choice is quite arbitrary. It can be 
saves  from any two different wave families or two different modes from the same 
wa~7e family. All these possible combinations have becn cxplorcd in our numerical 
calculations. These numerical rcsults will be discussed in the next swtion. 

4. Numerical results 
!Ye will adopt the notation ( ’ m n - L ) , ,  to  indicate the family and the mode 

numbers of the two waves involved in our resonant instability calculation. The single 
most interesting quantity as far as  mixing enhancement is concerned is the growth 
rate parameter o,H of (51). For a given c .  which is the ratio of the maximum height 
of the wavy wall to  the wavelength, the spatial growth rate of resonant instability 
over the distance of one channel height is equal to w , H .  In this section numerical 
results of r, H for different wave modcs under different mixing-layer operating 
conditions will be reported. Figure 5 shows a ty1)ical set of results. Here the values 
of rr H as a function of non-dimensional wave frcquency w H / u ,  for a number of two- 
dimensional wave modes arc provided. In  the calculation the fast-stream Mach 
number, Nl. was taken to be 3.5 and thc slow-stream Mach number, M,, to be 1.2. 
The sound speed ratio (a,/a,) was set to be 1.2. In addition. the shear layer has been 
assumed to  have a vorticity thickness to channel height ratio (6 , JH)  of 0.05. As can 
be seen, ur H varies not only with freyucwcy but also much more strongly with mode 
numbers. I t  appears that  the growth rates of the lower-order modes are quitc small. 
They are, thcrcfore, not likely to be candidates for mixing enhancement purposes. 

To providcb an estimate of whether the resonant instability mechanism proposed in 
this paper is a viable scheme for mixing enhancement wc are faced with the problem 
of not knowing what is the minimum growth rate required. A t  the present time. as  
far as we know. there is not enough experimental and theoretical understanding to  
offer any hint as to  what it ought to  bc. This is not too surprising for even in the 
relatively well-researched subject of boundary-layer transition only semi-empirical 
criteria are available. One of these criteria which stems to have received general 
acceptance is the eg-amplification factor of Smith & Gamberoni (1956) (see also 
Reshotko 1976). The suggestion is that as an empirical rule one may assunic that  
transition takes place after the Tollmien-Schlichting instability wak-es have 
amplificd by e9 folds. In thc complctc absence of any working formula we will adopt 
the same e9 amplification factor as a mixing enhancement criterion. Lye arc auare  
that  this is arbitrary and has no sound justification. We van only hope that  a more 
rational formula u ould become available in the future. Xow for practical 
considcrations we will restrict E to  no more than li% and allow a distance of tcn 
channel heights for amplification. \2‘ith these specific.ations it is easy to find that  
(T,H must be greatcr than or equal to  60 in order t o  produce an ~1~-fo ld  increase in 
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wHlU, 

FIGURE 5 .  Dependence of resonant instability growth parameter rr H on non-dimensional 
frequency W H I G ,  (spatial growth rate = ecrr H )  for different wave modes. M ,  = 3.5, M ,  = 1.2, 
aJa2 = 1.2, H ,  = H , ,  y1 = y z  = 1.4, S J H  = 0.05. 

amplitude. Therefore, in the following we will be particularly interested in cases for 
which the resonant instability growth parameter ( T ~  H is great'er than or close to  60. 

To assess the effectiveness of using resonant instability for mixing enhancement 
under different operating conditions a parametric study has been carried out. The 
results of this study will now be reported. 

4.1. Wuve mode effects 
Figure 5 provides the dependence of the spatial resonant instability growth 
parameter (T, H on frequency for a number of Con - Don wave modes. It was pointed 
out above that there is latitude in choosing the resonant wave modes. Here several 
choices will be examined. Figure 6 illustrates the strong dependence of this 
parameter on the modal number and wave family. In figure 6 ( a )  the growth rate 
parameter for C,, -Don (n  = 2,3 ,  . . . , 7 )  wave modes are given. It is clear from this 
figure that the resonant instability growth rate is generally smaller when the 
difference in the n-numbers of the two wave modes involved is larger. The numerical 
results appear to  suggest that it is advantageous to keep the n.-numbers the same in 
thc selection of wave modes. Figure 6 ( b ,  c )  shows that resonant instabilities 
associated with Con-Bon., and Con-Aon,  and Don-Aon,  wave modes are very 
ineffective. Based on these results we will limit our consideration to C-D modes in 
thc rest of this paper. 

4.2. Three-dimensional wave modes 
Numerical values of the spatial resonant instability growth rate parameter typical of 
three-dimensional wave modes (m = 1) are shown in figure 7. The mean flow 
conditions are the same as in figure 5 .  By comparing these two figures it is easy to 
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FIGURE 6. Dependence of resonant instability growth parameter ur H on wave modes 
( a )  C,,-D,, wave modes (n = 2.3 .  .... 5 ) .  ( 1 1 )  C,, -Bnl. (c) (ln4 -Anl and Aol-Dn5. 
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FIGURE 7 .  Growth parameter (gr H )  for three-dimensional wave modes (m = 1) 
M I  = 3.5, M ,  = 1.2. a,/., = 1.2, yI = y, = 1.4, S J H  = 0.05, H, = H , ,  B = H .  

see that two-dimensional wave modes generally have higher growth rates. Since our 
aim is to find conditions with the highest growth rate we will confine our attention 
to two-dimensional wave modes. 

4.3. Effects of shear-layer thickness 
It is well known that the thickness of a mixing layer exerts great influence on the 
growth rate of its natural instability waves. An example is given in figure 3. For the 
A,, instability wave mode the maximum growth rate decreases by over 50% as the 
thickness increases from S J H  = 0.05 to 0.2. In fact, it is this tendency of rapid 
decrease in growth rate with increase in mixing-layer thickness which effectively 
limits the natural mixing rate of shear layers especially a t  supersonic speeds. Figure 
8 ( a )  shows the dependence of the growth rate parameter of resonant instability on 
shear-layer thickness a t  frequency w H / a ,  = 1.0. Figure 8 ( b )  shows a similar 
dependence at  w H / a ,  = 0.4. Contrary to expectation CT,. H does not seem to be 
affected by changes in shear-layer thickness a t  all. This is true for all the wave modes 
we have considered. This result is most useful for estimating the total growth of the 
instability since the downstream changes in growth rate can be effectively ignored. 

4.4. Effects of Mach number 
Our computational study on the spatial growth parameter (a ,H)  of resonant 
instability indicates that it is very much affected by the flow Mach numbers. Figure 
9 is a plot of this parameter for the C,,-Do, wave modes at  a slow-stream Mach 
number of 1.2 as the fast-stream Mach number, M,, varies. At low M ,  the growth 
parameter is very large. As M ,  increases CT, H decreases monotonically. For M I  greater 
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FIGURE 10. Influence of flow Mach number on the spatial growth parameter. C,,-U,, wave 
modes. a, = uz,  y1 = y2 = 1.4, S J H  = 0.05. -. w H / a ,  = 1.0; - - - - - - - - ,  wH/t i ,  = 0.5. 
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T2/ T, 
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FIGURE 11. Effect of temperature on spatial growth parameter cr, H .  CO6 -Do6 wave modes. 

M, = 1.2, y1 = y 2  = 1.4. ( a )  w H / a ,  = 0 . 5 .  (6) w H / t i ,  = 1.0. 

than 3.0 there is only a narrow range of frequencies for which u, H is close to  60. In 
other words, resonant instability as  a mixing enhancement mechanism becomes less 
and less effective with increasing hlach numbers. Figure 10 shows the effect of 
increasing M ,  as well as M ,  a t  fixed frequencies. As can be seen, a t  moderate Mach 
number M I  a small increase in ill2 can lead to  a large reduction in growth rate. Based 
on the values of this figure it appears tha t  if thc resonant instability mechanism is 
to  be useful the Mach number of the slow stream must be in the low supersonic range. 

4.5. Effects of t emprature  
Here we consider the effect of heating the slow stream on the growth rate parameter 
(T, H .  Figure 11 ( a )  at w H / a ,  = 0.5 shows that ,  regardless of Mach numbers, heating 
of the slow stream generally increases u, H .  This temperature effect, however, 
becomes saturated at high temperature ratio. Figure 11 ( b )  a t  wH/ii ,  = 1.0 shows 
similar trends. At  higher frequency it seems that the effect can be realized over a 
large range of temperature ratios. Figure 12 shows the effect of heating over the 
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FIGURE 12. Effect of heating of the slow stream on the spatial growth parameter cr,H. Co6-Do6 
wave modes. M ,  = 3.5. M ,  = 1.2, y1 = y, = 1.4, 8, = 0.05. 
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FIGURE 13. Spatial growth parameter. Mach waves generated by the top wall. 
M ,  = 3.5, M ,  = 1.2, al /a2  = 1.2, y1 = y, = 1.4, 8 J H  = 0.05, H ,  = H,,  m = 0. 
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range of frequency up to wH/ti ,  = 2.0. A careful cxamination of the computed results 
reveals that the growth parameter appears to peak a t  w l k ,  = ti,-a,. As T,/Tl 
increases (ti,-a,) increases also. Therefore, the peak of u r H  moves to the right with 
increase in ZITl. It is safe to say that heating the slow stream while keeping the 
Mach numbers fixed generally makes the resonant instability growth rate increase. 
On the other hand, the opposite is true when heating is applied to the fast stream. 

To conclude this section we would like to point out that so far it has been assumed 
that the Mach wave system is generated by the lower wall (see figure 4) and cancelled 
by an appropriate choice of the amplitude and phase of the wavy upper surface. It 
is, of course, possible to reverse the role of the top and bottom walls. Figure 13 shows 
calculated results for flow conditions identical to those of figure 5 except that  the 
Mach wave system is generated by the top wall. On comparing figures 5 and 13 it is 
seen that the growth rates given in figure 13 is higher than the corresponding values 
in figure 5.  However, it must be pointed out that for the same E the Mach waves 
generated by the top wall are stronger ; it being adjacent to the faster stream. With 
this in mind it is probably not worthwhile making detailed comparisons between the 
two Mach wave arrangements. The important point to note is that  there is more than 
one way to introduce the periodic Mach wave system. 

5. Discussion 
In this paper we have demonstrated that it is possible to induce resonant 

instability involving two natural wave modes of a supersonic shear layer inside a 
rectangular channel by a periodic Mach wave system. The periodic Mach waves do 
not supply energy to the resonant waves. They act as catalysts. Their presence allows 
the two natural wave modes to exert secular forcing on each other. The simultaneous 
mutual forcing gives rise to spatial growth. The spatial growth rate of the resonant 
instability can be quite large. To provide an idea of its magnitude, if we take E = 
0.015 and (T, H = 60 then the growth rate over the distance of a channel height is 0.9. 
For comparison, the maximum growth rate of the natural instability wave under 
typical flow conditions as given in figure 3 is about 0.5 per channel height (taking 
6 J H  = 0.08) and becomes much smaller as the thickness of the shear layer increases. 
Thus resonant instability is potentially a more powerful mechanism for mixing 
enhancement than the excitation of the natural instability waves. 

So far one aspect of using the periodic Mach wave system has not been discussed : 
the performance loss due to increase in drag. First of all with supersonic flow there 
is a wave drag. It is a simple matter to show that the wave drag is proportional to 
e2, so with small E this loss is relatively small. However, there will also be an added 
viscous drag due to the wavy surface. For high-temperature, high-speed flow we do 
not have a simple formula for estimating the added viscous drag. We believe that it 
is probably of the same order of magnitude as the wave drag. If this is the case the 
total drag might not be of great significance overall. 
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